banner



Engineering Mathematics Questions And Answers

If the difference between the mode and median is 2, then find the difference between the median and mean(in the given order).

  1. 2
  2. 1
  3. 3
  4. 4

Answer (Detailed Solution Below)

Option 2 : 1

Concept:

Relation between mode, median and mean is given by:

Mode = 3 × median – 2 × mean

Calculation:

Given:

Mode – median = 2

As we know

Mode = 3 × median – 2 × mean

Now, Mode = median + 2

⇒ (2 + median) = 3median – 2mean

⇒ 2Median - 2Mean = 2

⇒ Median - Mean = 1

∴ The difference between the median and mean is 1.

Consider the below data:

\(\begin{array}{*{20}{c}} x&:&0&1&2\\ {f\left( x \right)}&:&4&3&{12} \end{array}\)

The value of\(\mathop \smallint \nolimits_0^2 f\left( x \right)dx\) by Trapezoidal rule will be:

  1. 11
  2. 12
  3. 15
  4. 9

Answer (Detailed Solution Below)

Option 1 : 11

Concept:

Trapezoidal rule states that for a function y = f(x)

x

x0

x1

x2

x3

……

xn

y

y0

y1

y2

y3

……

yn


xn = x0 + nh, where n = Number of sub-intervals

h = step-size

\(\mathop \smallint \nolimits_{{x_0}}^{{x_0} + nh} f\left( x \right)dx = \frac{h}{2}\left[ {\left( {{y_0} + {y_n}} \right) + 2\left( {{y_1} + {y_2} + {y_3} + \ldots + {y_{n - 1}}} \right)} \right]\)   ---(1)

For a trapezoidal rule, a number of sub-intervals must be a multiple of 1.

Calculation:

\(\begin{array}{*{20}{c}} x&:&0&1&2\\ {f\left( x \right)}&:&4&3&{12} \end{array}\)

Here: x0 = 4, x1 = 3, x2 = 12, h = 1

From equation (1);

\(\mathop \smallint \limits_0^2 f\left( x \right)dx = \frac{h}{2}\left[ {\left( {{x_0} + {x_2}} \right) + 2\left( {{x_1}} \right)} \right]\)

\( = \frac{1}{2}\left[ {\left( {{4} + {12}} \right) + 2\left( {{3}} \right)} \right]={22\over2}=11\)

Key Points:

Apart from the trapezoidal rule, other numerical integration methods are:

Simpson's one-third rule:

For applying this rule, the number of subintervals must be a multiple of 2.

\(\mathop \smallint \nolimits_{{x_0}}^{{x_0} + nh} f\left( x \right)dx = \frac{h}{3}\left[ {\left( {{y_0} + {y_n}} \right) + 4\left( {{y_1} + {y_3} + {y_5} + \ldots + {y_{n - 1}}} \right) + 2\left( {{y_2} + {y_4} + {y_6} + \ldots + {y_{n - 2}}} \right)} \right]\)     ..2)

Simpson's three-eighths rule:

For applying this rule, the number of subintervals must be a multiple of 3.

\(\mathop \smallint \nolimits_{{x_0}}^{{x_0} + nh} f\left( x \right)dx = \frac{{3h}}{8}\left[ {\left( {{y_0} + {y_n}} \right) + 3\left( {{y_1} + {y_2} + {y_4} + {y_5} + \ldots } \right) + 2\left( {{y_3} + {y_6} + \ldots } \right)} \right]\)

A bag contains 3 white, 2 blue and 5 red balls. One ball is drawn at random from the bag. What is the probability that the ball drawn is not red?

  1. 3/10
  2. 1/5
  3. 1/2
  4. 4/5

Answer (Detailed Solution Below)

Option 3 : 1/2

Calculation:

A bag contains 3 white, 2 blue and 5 red balls.

Total number of balls = 3 + 2 + 5 = 10

Number of balls that are not red = 10 - 5 = 5

Probability of balls drawn is not red = (number of balls which are not red)/(total number of balls) = 5/10 = 1/2

For what value of λ, do the simultaneous equation 2x + 3y = 1, 4x + 6y = λ have infinite solutions?

  1. λ = 0
  2. λ = 1
  3. λ ≠ 2
  4. λ = 2

Answer (Detailed Solution Below)

Option 4 : λ = 2

Concept:

Non-homogeneous equation of type AX = B has infinite solutions;

if ρ(A | B) = ρ(A) < Number of unknowns

Calculation:

Given:

2x + 3y = 1

4x + 6y = λ

The augmented matrix is given by:

\(\left( {A{\rm \ {|}} \ B} \right) = \left[ {\begin{array}{*{20}{c}} 2&3&{1\;}\\ 4&6&\lambda \end{array}} \right]\)

Applying R2 → R2 – 2R1

\(\left( {A{\rm \ {|}} \ B} \right) = \left[ {\begin{array}{*{20}{c}} 2&3&{1\;}\\ 0&0&{\lambda - 2} \end{array}} \right]\)

For the system to have infinite solutions, the last row must be a fully zero row.

So if λ = 2 then the system of equations has infinitely many solutions.

Key Points:

Remember the system of equations

AX = B have

1) Unique solution, if ρ(A : B) = ρ(A) = Number of unknowns.

2) Infinite many solutions, if ρ(A : B) = ρ(A) < Number of solutions

3) No solution, if ρ(A : B) ≠ ρ(A).

The value of\(\mathop {\lim }\limits_{x \to 0} \left( {x\sin \frac{1}{x}} \right)\) is:

  1. - 1
  2. 0
  3. 1

Answer (Detailed Solution Below)

Option 3 : 0

Concept:

sin θ can take from - to + but sin θ gives - 1 to + 1, i.e. for values of θ from-  to+∞, sin θ always lies between -1 and 1.

\( - 1 \le \sin θ \le 1\)

sin gives finite value.

Analysis:

Let,

\(f(x)=\mathop {\lim }\limits_{x \to 0} \left( {x\sin \frac{1}{x}} \right)\)

When x = 0

f(x) = 0 × sin

f(x) = 0 × Finite value

\(f(x)=\mathop {\lim }\limits_{x \to 0} \left( {x\sin \frac{1}{x}} \right)=0\)

The differential equation 2y dx – (3y – 2x) dy = 0 is

  1. exact and homogenous but not linear
  2. exact, homogenous and linear
  3. exact and linear but not homogenous
  4. homogenous and linear but not exact

Answer (Detailed Solution Below)

Option 2 : exact, homogenous and linear

Concept:

Homogenous equation: If the degree of all the terms in the equation is the same then the equation is termed as a homogeneous equation.

​Exact equation: The necessary and sufficient condition of the differential equation M dx + N dy = 0 to be exact is:

\(\frac{{\partial M}}{{\partial y}} = \frac{{\partial N}}{{\partial x}}\)

Linear equation: A differential equation is said to be linear if the dependent variable and its differential coefficient only in the degree and not multiplied together.

The standard form of a linear equation of the first order, commonly known as Leibnitz's linear equation is:

\(\frac{{dy}}{{dx}}+Py=Q\)

where, P, Q is a function of x.

or,\(\frac{{dx}}{{dy}}+Px=Q\)

where, P, Q is a function of x.

Condition 1:

2y dx + (2x - 3y) dy = 0   ---.(1)

(It is Homogeneous)

Condition 2:

Equation (1) can be written as  ​\(\frac{{dy}}{{dx}}=\frac{{2y}}{{2x\;-\;3y}}\) .

It is not a linear form.

or\(\frac{{dx}}{{dy}}=\frac{{2x-3y}}{{2y}}\)

\(\frac{{dx}}{{dy}}+\frac{{x}}{{y}}=\frac{{3}}{{2}}\)

It is in linear form

Condition 3:

M dx + N dy = 0

2y dx – (3y – 2x) dy = 0

hence, M = 2y and N = 2x - 3y

\(\frac{{\partial M}}{{\partial y}} =\frac{{\partial (2y)}}{{\partial y}}= 2\) and\(\frac{{\partial N}}{{\partial x}}= \frac{{\partial (2x+3y)}}{{\partial x}}=2\)

As\(\frac{{\partial M}}{{\partial y}}=\frac{{\partial N}}{{\partial y}}\)

so, it is an exact equation.

If Rank (A) = 2 and Rank (B) = 3 then Rank (AB) is:

  1. 6
  2. 5
  3. 3
  4. Data inadequate

Answer (Detailed Solution Below)

Option 4 : Data inadequate

Concept:

Rank:

The rank of a matrix is a number equal to the order of the highest order non-vanishing minor, that can be formed from the matrix.

For matrix A,it is denoted by ρ(A).

The rank of a matrix is said to be r if,

  • There is at least one non-zero minor of order r.
  • Every minor of matrix Ahaving order higher than r is zero.

Property of Rank of Matrix:

ρ(AB) ≤ min [ρ(A), ρ(B)]

Calculation:

Given:

ρ(A) = 2, ρ(B) = 3

Using properties

ρ(AB) ≤ min [ρ(A), ρ(B)]

ρ(AB) ≤ min (2,3)

 ρ(AB) ≤  2

Alternate Method

Let order of matrix A be 2 × m and order of matrix B be m × 3 (∵ for multiplication we need the column of A and row of B to be same)

∴ Order of matrix AB will be 2 × 3

Using properties

ρ(AB) ≤ min (Row, Column)

⇒ ρ(AB) ≤ min (2, 3)  [only when the column of A and row of B is the same]

⇒ ρ(AB) ≤ 2.

we don't know the dimension of A and B, we cannot predict the exact rank of AB but its maximum rank will be 2.

Important Points

Other properties of rank of a matrix are:

  • The rank of a matrix does not change by elementary transformation, we can calculate the rank by changing the matrix into Echelon form. In the Echelon form, the rank of a matrix is the number of non-zero rows of the matrix.
  • The rank of a matrix is zero if the matrix is null.
  • ρ(A) ≤ min (Row, Column)
  • ρ(AB) ≤ min [ρ(A), ρ(B)]
  • ρ(ATA) = ρ(A AT) = ρ(A) = ρ(AT)
  • If A and B are matrices of the same order, then ρ(A + B) ≤ ρ(A) + ρ(B) and ρ(A - B) ≥ ρ(A) - ρ(B).
  • If Aθis the conjugate transpose of A, then ρ(Aθ) = ρ(A) and ρ(A Aθ) = ρ(A).
  • The rank of a skew-symmetric matrix cannot be one.

The standard ordered basis of R3 is {e1, e2, e3} Let T : R3 → R3 be the linear transformation such that T(e1) = 7e1 - 5e3, T (e2) = -2e2 + 9e3, T(e3) = e1 + e2 + e3. The standard matrix of T is:

  1. \(\left( {\begin{array}{*{20}{c}} 7&0&1\\ 0&{ - 2}&1\\ { - 5}&9&1 \end{array}} \right)\)
  2. \(\left( {\begin{array}{*{20}{c}} 7&-2&1\\ -5&{ 9}&1\\ { 0}&0&1 \end{array}} \right)\)
  3. \(\left( {\begin{array}{*{20}{c}} 7&0&-5\\ 0&{ - 2}&9\\ 1&1&1 \end{array}} \right)\)
  4. \(\left( {\begin{array}{*{20}{c}} 7&-5&0\\ -2&{ 9}&1\\ { 1}&1&1 \end{array}} \right)\)

Answer (Detailed Solution Below)

Option 1 : \(\left( {\begin{array}{*{20}{c}} 7&0&1\\ 0&{ - 2}&1\\ { - 5}&9&1 \end{array}} \right)\)

Concept:

Matrix transformations:

Theorem: Suppose L: Rn → Rm is a linear map. Then there exists an m×n matrix A such that L(x) = Ax for all x ∈ Rn. Columns of A are vectors L(e1), L(e2), . . . , L(en), where e1, e2, . . . , en is the standard basis for Rn.

Calculation:

Given linear transformation are:

T(e1) = 7e1 - 5e3,

T(e2) = -2e2 + 9e3,

T(e3) = e1 + e2 + e3

Let the standard matrix be A with respect to the basis e1, e2, e3,

Now T(e1) = 7e1 + 0e2 - 5e3,

T(e2) = 0e1 -2e2 + 9e3,

T(e3) = e1 + e2 + e3.

The standard matrix will be (transpose of linear combinations)

\(\left( {\begin{array}{*{20}{c}} 7&0&1\\ 0&{ - 2}&1\\ { - 5}&9&1 \end{array}} \right)\)

The value of\(\mathop \smallint \nolimits_0^{2\pi } \mathop \smallint \nolimits_0^{\pi /4} \mathop \smallint \nolimits_0^1 {r^2}\sin \theta dr\;d\theta \;d\phi \) will be:

  1. \(\frac{{\sqrt 2{\pi } }}{3}\left( {\sqrt 2 + \sqrt 3 } \right)\)
  2. \(\frac{{{2\pi } }}{3}\left( {\sqrt 3 -1 } \right)\)
  3. \(\frac{{ {2\pi } }}{3}\left( {\sqrt 2 - \sqrt 3 } \right)\)
  4. \(\frac{{\sqrt 2{\pi } }}{3}\left( {\sqrt 2 -1 } \right)\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{{\sqrt 2{\pi } }}{3}\left( {\sqrt 2 -1 } \right)\)

\(\mathop \smallint \nolimits_0^{2\pi } \mathop \smallint \nolimits_0^{\pi /4} \mathop \smallint \nolimits_0^1 {r^2} \sin \theta drd\theta d\phi \)

=\( \mathop \smallint \limits_0^{2\pi } \mathop \smallint \limits_0^{\frac{\pi }{4}} \mathop \smallint \limits_0^1 \left( {{r^2} \times dr} \right) \times \sin \theta d\theta d\phi \)

=\(\mathop \smallint \limits_0^{2\pi } \mathop \smallint \limits_0^{\frac{\pi }{4}} \left[ {\frac{{{r^3}}}{3}} \right]_0^1 \times \sin \theta d\theta d\phi \)

=\( \frac{1}{3}\mathop \smallint \limits_0^{2\pi } \mathop \smallint \limits_0^{\frac{\pi }{4}} \sin \theta \times d\theta \times d\phi \)

=\(\frac{1}{3}\mathop \smallint \limits_0^{2\pi } - \left[ {\cos \theta } \right]_0^{\frac{\pi }{4}} \times d\phi \)

=\( \frac{1}{3}\mathop \smallint \limits_0^{2\pi } - \left[ {\frac{1}{{\sqrt 2 }} - 1} \right] \times d\phi \)

=\(\frac{1}{{3\sqrt 2 }}\left[ {\sqrt 2 \phi - \phi } \right]_0^{2\pi }\)

=\(\frac{{2\pi }}{{3\sqrt 2 }}\left[ {\sqrt 2 - 1} \right]\)

=\(\frac{{\sqrt 2{\pi } }}{3}\left( {\sqrt 2 -1 } \right)\)

A complete solution of partial differential equation\(\frac {\partial z}{\partial x} - 3x^2 = \left(\frac {\partial z}{\partial y}\right)^2 - y\) will be ________, where a and b are arbitrary constants.

  1. z2 = ax2 + by2 + 1
  2. \(z = ax + x^3 + \left(\frac 2 3\right) (a + y)^{\frac 3 2} + b\)
  3. z1 / 2 = (x + a)1 / 2 + (y + b)1 / 2
  4. z = (ax2 + by2)3 / 2 + 2

Answer (Detailed Solution Below)

Option 2 : \(z = ax + x^3 + \left(\frac 2 3\right) (a + y)^{\frac 3 2} + b\)

Concept:

Separable equation of the form f(x, p) = g(y, q)

Let f(x, p) = g(y, q) = a (constant)

Solve f(x, p) = a and g(y, q) = a for p and q, we get

p = ϕ(x, a) and q = ψ(y, a)

We have dz = p dx + q dy

Bu integration, we get the required solution as follows,

z = ∫ ϕ(x, a) dx + ∫ ψ(y, a) dy + b

Where a, b are arbitrary constants.

Calculation:

Given Partial differentiation equation is\(\frac {\partial z}{\partial x} - 3x^2 = \left(\frac {\partial z}{\partial y}\right)^2 - y\)

Writing in terms of p,q ⇒ p - 3x2 = q2 - y

Let p - 3x2 = q2 - y = a (constant)

Now p - 3x2 = a ⇒ p = 3x2 + a

q2 - y = a ⇒\(q = \sqrt {y+a}\)

Substituting the values of p and q in dz = p dx + q dy, we get

\(dz = (a+3x^2)dx + (\sqrt {y+a})dy \)

Integrating on both sides, we get the general solution as

\(z = ax + x^3 + \left(\frac 2 3\right) (a + y)^{\frac 3 2} + b\)

For the curve xy3 - yx3 = 6, the slope of the tangent line at the point (1, -1) is:

  1. 1 / 2
  2. -1
  3. 2
  4. 1

Answer (Detailed Solution Below)

Option 2 : -1

Concept :

Let y = f(x) be the equation of a curve, then the slope of the tangent at any point say (x1, y1) is given by:

\(m = {\left[ {\frac{{dy}}{{dx}}} \right]_{\left( {{x_1},\;\;{y_1}} \right)}}\)

Calculation:

Given curve is xy3 - yx3 = 6

Now by partially differentiating the equation of curve with respect to x we get;

\(3xy^2\frac{dy}{dx}+y^3-3x^2y-x^3\frac{dy}{dx}=0\)

\(\frac{dy}{dx}({3xy^2-x^3})={3x^2y-y^3}\)

\(\frac{dy}{dx}=\frac{3x^2y-y^3}{3xy^2-x^3}\)

\(\frac{dy}{dx}=\frac{y(3x^2-y^2)}{x{(3y^2-x^2)}}\)

The slope(m) i.e. dy/dx of the tangent at (1, -1) is:

m =  -1

A partial differential equation derived from the equation z = aeby sinbx will be:

  1. \(\frac{{\partial z}}{{\partial y}} = 2y{\left( {\frac{{\partial z}}{{\partial x}}} \right)^2}\)
  2. \(\left( {1 + \frac{{\partial z}}{{\partial y}}} \right)\frac{{\partial z}}{{\partial x}} = z\)
  3. \(\frac{{{\partial ^2}z}}{{\partial {x^2}}} + \frac{{{\partial ^2}z}}{{\partial {y^2}}} = 0\)
  4. \(2z = x\frac{{\partial z}}{{\partial x}} + y\frac{{\partial z}}{{\partial y}}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{{{\partial ^2}z}}{{\partial {x^2}}} + \frac{{{\partial ^2}z}}{{\partial {y^2}}} = 0\)

z = aeby sinbx

Now by differentiating w.r.t. x we get:

\(\frac{{\partial z}}{{\partial x}} = a \times {e^{by}} \times \cos bx \times b\)

Again differentiating:

\( \frac{{{\partial ^2}z}}{{\partial {x^2}}} = - a \times {b^2} \times {e^{by}} \times \sin bx\)  ----(1)

z = aeby sinbx

Now by differentiating w.r.t. y we get:

\(\frac{{\partial z}}{{\partial y}} = a \times \sin bx \times {e^{by}} \times b\)

Again differentiating:

\( \frac{{{\partial ^2}z}}{{\partial {y^2}}} = a \times {b^2} \times {e^{by}} \times \sin bx\)  ----(2)

Now by adding (1) and (2) we get:

\(\frac{{{\partial ^2}z}}{{\partial {x^2}}} + \frac{{{\partial ^2}z}}{{\partial {y^2}}} = 0\)

Hence, Option 3 is correct.

The value of x for which of the following series converges is

\(x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} + \frac{{{x^5}}}{5} - \ldots \infty ,\)

  1. The series converges f0r -1< x< 1
  2. The series converges for -1 < x< 1
  3. The series diverges for -1 < x < 1
  4. The series converges for x > 1

Answer (Detailed Solution Below)

Option 2 : The series converges for -1 < x

<

 1

Explanation:

Given series is,

\(x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4} + \frac{{{x^5}}}{5} - \ldots \infty ,\)

\({u_n} = {\left( { - 1} \right)^{n - 1}}\frac{{{x^n}}}{n}\)

\({u_{n + 1}} = {\left( { - 1} \right)^n}\frac{{{x^{n + 1}}}}{{n + 1}}\)

\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{ - n}}{{n + 1}}x\)

\(\mathop {{\rm{lt}}}\limits_{n \to \infty } \left| {\left. {\frac{{{u_n} + 1}}{{{u_{n\;\;}}}}} \right| = \mathop {{\rm{lt}}}\limits_{n \to \infty } \left( {\frac{n}{{n + 1}}} \right)\left( {\left| x \right|} \right)} \right.\)

\(= \left| x \right|\)

By ratio test, the given series converges for |x| < 1 and diverges for |x| > 1

Let us examine the series for x = ± 1

For x = 1, the series reduces to

\(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \ldots\)

This is an alternating series and is convergent.

For x = -1 the series becomes

\(- \left( {1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots } \right)\)

This is a divergent series as can be seen by comparison with P-series with P = 1

Hence the given series is converges for -1 < x

<

1

The value of\(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{3x - 6}}\) is:

  1. \(\frac1 3\)
  2. \(\frac 4 3\)
  3. 1
  4. \(\frac 2 3\)

Answer (Detailed Solution Below)

Option 2 : \(\frac 4 3\)

Concept :

L-Hospital Rule: Let f(x) and g(x) be two functions

Suppose that we have one of the following cases,

I.\(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}} = \frac{0}{0}\)

II.\(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}} = \frac{\infty }{\infty }\)

Then we can apply L-Hospital Rule ⇔\(\mathop {\lim }\limits_{{\bf{x}} \to {\bf{a}}} \frac{{{\bf{f}}\left( {\bf{x}} \right)}}{{{\bf{g}}\left( {\bf{x}} \right)}} = \mathop {\lim }\limits_{{\bf{x}} \to {\bf{a}}} \frac{{{\bf{f}}'\left( {\bf{x}} \right)}}{{{\bf{g}}'\left( {\bf{x}} \right)}}\)

Calculation:

Given:

\(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{3x - 6}}\)

As we can see,\(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{3x - 6}}=\frac{0}{0}\)

So, Apply the L-Hospital rule here,

\(\mathop {\lim }\limits_{x \to 2} \frac{{{2x} }}{{3}}\)

After putting the limit we'll get:

\(\mathop {\lim }\limits_{x \to 2} \frac{{{2x} }}{{3}}=\frac{4}{3}\)

Hence the required value of the limit is\(\frac4 3\).

\(\mathop {\lim }\limits_{x \to 0} \frac{{\cos x - 1}}{{\sin x - x}}\) is equal to

  1. Undefined
  2. 1
  3. 0

Answer (Detailed Solution Below)

Option 2 :

Concept:

L-Hospital Rule: Let f(x) and g(x) be two functions

Suppose that we have one of the following cases,

I.\(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}} = \frac{0}{0}\)

II.\(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} \frac{{{\rm{f}}\left( {\rm{x}} \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}} = \frac{\infty }{\infty }\)

Then we can apply L-Hospital Rule as:

\(\mathop {\lim }\limits_{{\bf{x}} \to {\bf{a}}} \frac{{{\bf{f}}\left( {\bf{x}} \right)}}{{{\bf{g}}\left( {\bf{x}} \right)}} = \mathop {\lim }\limits_{{\bf{x}} \to {\bf{a}}} \frac{{{\bf{f}}'\left( {\bf{x}} \right)}}{{{\bf{g}}'\left( {\bf{x}} \right)}}\)

Calculation:

Given:

\(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{cos\;x\; -\;1}}{{sin\;x\; - \;x}} = \left( {\frac{0}{0}} \right)\) form

Applying L' Hospital  rule:

\(\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{{cos\;x - 1}}{{sin\;x-\;x}} =\mathop {{\rm{lim}}}\limits_{x \to 0} \frac{\frac{d}{dx}({cos\;x\; -\;1})}{{\frac{d}{dx}(sin\;x\;-\;x})} =\mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{-sin\;x {\rm{}}}}{{\cos {\rm{x}\;-\;1}}} \)

\(\mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{-sin\; {\rm{x}}}}{{\cos {\rm{x}\,-1\;}}} = \left( {\frac{0}{0}} \right){\rm{form}}\)

Once again by L' Hospital rule,

\({\rm{}}\mathop {\lim }\limits_{{\rm{x}} \to 0} \frac{{-cos\; {\rm{x}}}}{{{\rm{-sin~x}}}} = \frac{-1}{0} = \infty{\rm{}}\)

If A is \(\left[ {\begin{array}{*{20}{c}} 8&5\\ 7&6 \end{array}} \right]\) then the value of |A121 - A120|

  1. 0
  2. 1
  3. 120
  4. 121

Answer (Detailed Solution Below)

Option 1 : 0

Concept:

Let B = |A121 - A120|

B = |A120 × (A – I)|

B = |A120| × |A – I|

Calculation:

A =\(\left[ {\begin{array}{*{20}{c}} 8&5\\ 7&6 \end{array}} \right]\)

Now, calculating matrix [A – I]

[A – I] = \(\left[ {\begin{array}{*{20}{c}} 8&5\\ 7&6 \end{array}} \right] - {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

[A – I] = \(\left[ {\begin{array}{*{20}{c}} 7&5\\ 7&5 \end{array}} \right]\)

Now determinant of |A – I|,

|A – I| = \(\left| {\begin{array}{*{20}{c}} 7&5\\ 7&5 \end{array}} \right|\)

|A – I| = 0   (Since two rows are repeated, therefore determinant = 0)

Hence, |A121 - A120 | = 0

The general solution of partial differential equation

\(x\left( {{y^2} + z} \right)\frac{{\partial z}}{{\partial x}} - y\left( {{x^2} + z} \right)\frac{{\partial z}}{{\partial y}}=\left( {{x^2} - {y^2}} \right)z\) will be:

  1. φ(xyz, x2 + y2 - 2z) = 0, where φ is an arbitrary function.
  2. φ(x + y + z,x2 + y2) = 0, where φ is an arbitrary function.
  3. φ(x2 + y2 + z2, x + y + z) = 0 where φ is an arbitrary function
  4. φ(x + y - z, xy + yz + zx) = 0, where φ is an arbitrary function

Answer (Detailed Solution Below)

Option 1 : φ(xyz, x2 + y2 - 2z) = 0, where φ is an arbitrary function.

Concept:

Linear Partial Differential Equation of First Order:A linearpartial differential equationof the first order, commonly known as Lagrange's Linear equation, is of the form Pp + Qq = R where P, Q, and R are functions of x, y, z. This equation is called a quasi-linear equation.

Thus, to solve the equation of the form Pp + Qq = R, we have to follow this solution procedure:

1) Form the subsidiary equations as:

\(\frac {dx}{P} = \frac {dy}{Q} = \frac {dz}{R}\)

2) Solve any two simultaneous equations by any method giving u = a and v = b as its solutions.

3) Write the complete solution as φ (u, v) = 0 or u = f (v).

Lagrange's method of multipliers:

Consider the partial differentiation equation Pp + Qq = R

then auxiliary equations are given by:

\(\frac {dx}{P} = \frac {dy}{Q} = \frac {dz}{R}\)

Now choose multipliers P1, Q1, R1 in such a way that in ratio

\(\frac {{{P_1}{dx}}+{{Q_1}{dy}}+{{R_1}{dz}}}{{{P_1}{P}}+{{Q_1}{Q}}+{{R_1}{R}}}\), denominators vanish.

⇒ P1 dx + Q1 dy + R1 dz = 0

By integration, the solution is given by u (x, y, z) = c1

Similarly, by choosing another set of multipliers, function v(x, y, z) is determined.

Then complete solution is given by f (u, v) = 0.

Calculation:

Given:

\(x\left( {{y^2} + z} \right)\frac{{\partial z}}{{\partial x}} - y\left( {{x^2} + z} \right)\frac{{\partial z}}{{\partial y}}=\left( {{x^2} - {y^2}} \right)z\)

Comparing with Pp + Qq = R,

P = x (y2 + z); Q = -y (x2 + z); R = (x2 - y2) z;

∴ The auxiliary equations are:

\(\frac{{{\rm{dx}}}}{{{\rm{x\;}}\left( {{\rm{y^2}} + {\rm{z}}} \right){\rm{\;}}}} = \frac{{{\rm{dy}}}}{{{\rm{\;-y\;}}\left( {{\rm{x^2}} + {\rm{z}}} \right){\rm{\;}}}} = \frac{{{\rm{dz}}}}{{{\rm{z\;}}\left( {{\rm{x^2}} - {\rm{y^2}}} \right)}}\)

1st function:

Using multipliers x, y and -1 ⇒

\({\rm{\;}}\frac{{{\rm{xdx}} + {\rm{ydy}} - {\rm{dz}}}}{{{\rm{x^2\;}}\left( {{\rm{y^2}} + {\rm{z}}} \right) - {\rm{\;y^2\;}}\left( {{\rm{x^2}} + {\rm{z}}} \right) - {\rm{z\;}}\left( {{\rm{x^2}} - {\rm{y^2}}} \right)}} = \frac{{{\rm{xdx}} + {\rm{ydy}} - {\rm{dz}}}}{0}\)

∴ x dx + y dy - dz = 0 ⇒ x2 + y2 - 2z = constant;

2nd function:

Using multipliers 1/x, 1/y and 1/z

\({\rm{\;}}\frac{{{\rm{{\frac{1}{x}}dx}} + {\rm{{\frac{1}{y}}dy}} + {\rm{{\frac{1}{z}}dz}}}}{{\left( {{\rm{y^2}} + {\rm{z}}} \right) - \left( {{\rm{x^2}} + {\rm{z}}} \right) + \left( {{\rm{x^2}} - {\rm{y^2}}} \right)}} \)

\(= \frac{{{\rm{{\frac{1}{x}}dx}} + {\rm{{\frac{1}{y}}dy}} + {\rm{{\frac{1}{z}}dz}}}}{0}\)

\({{\rm{{\frac{1}{x}}dx}} + {\rm{{\frac{1}{y}}dy}} + {\rm{{\frac{1}{z}}dz}}} = 0 \)

xyz = constant

So both the equations are:

x2 + y2 - 2z = constant; xyz = constant;

Complete solution isφ(xyz, x2 + y2 - 2z) = 0, where φ is an arbitrary function.

A matrix X has a dimension of 2 × 2. If the eigenvalues of this matrix is 5 and 6, what would be the eigen values of X2?

  1. 2.5 and 3
  2. 5 and 6
  3. 10 and 12
  4. 25 and 36

Answer (Detailed Solution Below)

Option 4 : 25 and 36

Concept:

If A is any square matrix of order n, we can form the matrix [A – λI], where I is the nth order unit matrix. The determinant of this matrix equated to zero i.e. |A – λI| = 0 is called the characteristic equation of A.

The roots of the characteristic equation are called Eigenvalues or latent roots or characteristic roots of matrix A.

Properties of Eigenvalues:

(1) If λ is an eigenvalue of a matrix A, then λn will be an eigenvalue of a matrix An.

(2) If λ is an eigenvalue of a matrix A, then kλ will be an eigenvalue of a matrix kA where k is a scalar.

(3) Sum of eigenvalues is equal to the trace of that matrix.

(4) The product of Eigenvalues of a matrix A is equal to the determinant of that matrix A.

(5)  If λ is an Eigenvalue of matrix A, then λ2 will be an Eigenvalue of matrix A2.

(6) If λ1 is an Eigenvalue of matrix A, then (λ1 + 1) will be an Eigenvalue of the matrix (A + I).

(7) Eigenvalues of a matrix and its transpose are the same because the transpose matrix will also have the same characteristic equation.

Calculation:

If  λ1, λ2, λ3 …. λ4 are the given values of A, then

eigenvalues of Amwill be\(\lambda _1^m,\lambda _2^m,\lambda _3^m, \ldots \ldots ..\)

'S' matrix has eigenvalues 5 and 6.

S2 matrix has eigenvalues 52 and 362

i.e. 25 and 36.

The approximate solution of the system of simultaneous equations

2x - 5y + 3z = 7

x + 4y - 2z = 3

2x + 3y + z = 2

by applying Gauss-Seidel method one time (using initial approximation as x - 0, y - 0, z - 0) will be:

  1. x = 2.32, y = 1.245, z = -3.157
  2. x = 1.25, y = -2.573, z = -3.135
  3. x = 2.45, y = -1.725, z = -3.565
  4. x = 3.5, y = -0.125, z = -4.625

Answer (Detailed Solution Below)

Option 4 : x = 3.5, y = -0.125, z = -4.625

Concept:

Gauss Seidel Method:

In Gauss Seidel method, the value of x calculated is used in next calculation putting other variable as 0.

2x - 5y + 3z = 7

Putting y = 0, z = 0 ⇒ x = 3.5

x + 4y - 2z = 3

Putting x = 3.5, z = 0y = - 0.125

2x + 3y + z = 2

Putting x = 3.5 , y = - 0.125 ⇒ z = 2 – 3(-0.125) – 2(3.5)

z = - 4.625

The value of\(\mathop \oint \nolimits_c \frac{1}{{{z^2} + 4}}dz\) Where C |z - 2i| = 1 is will be:

  1. 0
  2. 1/5
  3. π/2
  4. π /3

Answer (Detailed Solution Below)

Option 3 : π/2

Concept:

Cauchy's Integral Formula

If f(z) is analytic within and on a closed curve and ifais any point within C, then:

\(\mathop \smallint \limits_C^{} \frac{{f\left( z \right)}}{{z - a}}dz = 2\pi if\left( a \right)\)

Analysis:

Given:

\(f\left( z \right) = \smallint \frac{{{1}}}{{{z^2+4}}}dz\)

|z - 2i| = 1

|x + iy - 2i| = 1

|x + i(y - 2)| = 1

Taking the magnitude of the above, we get:

x2 +(y - 2)2= 1

This is the equation of a circle with:

Radius (r) = 1

Center = (0, 2)

Poles of f(z) = z2 + 4

z = (+2i, -2i)

2i lies Inside the circle

-2i lies outside the circle

∴ We can write:

\(For\;pole\;\left( {z\; = \;-2i} \right) = \smallint \frac{{{1}}}{{\left( {z-2i} \right)\left( { z+2i} \right)}}dz = 0\)

Now, for pole z = 2i (lies inside the circle)

\(\smallint \frac{{{1}}}{{\left( {z+2i} \right)\left( {z-2i} \right)}}dz = 2\pi i{\left[ {\frac{{{1}}}{{2i+2i}}} \right]_{z = 2i}}\)

\(2\pi i\left[ {\frac{1}{4i}} \right] ={\frac{\pi}{2}}\)

Engineering Mathematics Questions And Answers

Source: https://testbook.com/objective-questions/mcq-on-engineering-mathematics--5eea6a0a39140f30f369dbdb

Posted by: rivasasaing.blogspot.com

0 Response to "Engineering Mathematics Questions And Answers"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel